WiMAX technology is presently one of the most promising global telecommunication systems. Great hopes and important investments have been made for WiMAX, which is a Broadband Wireless Access System having many applications: fixed or last-mile wireless access, backhauling, mobile cellular network, telemetering, etc. WiMAX is based on the IEEE 802.16 standard, having a rich set of features. This standard defines the Medium Access Layer and the Physical Layer of a fixed and mobile Broadband Wireless Access System. WiMAX to provide high-speed access to the Internet where the transmission control protocol (TCP) is the core transport protocol. Unlike routing, where packets are relayed hop-by-hop toward their destination, TCP actually provides reliable end-to-end transmission of transport-level segments from source to receiver. As TCP was designed for wired networks it considers that all packet loss in the network is due to congestion. Wireless medium is more exposed to transmission errors and sudden topological changes. This paper presents a thorough overview of some of the versions of TCP along with their strengths and weaknesses. A comparative study of the QoS parameters and routing protocols is done and in addition, the current issues and future challenges that are involved in this exciting area of research are also included.

Keywords: WiMAX, IEEE 802.16, TCP, Reno, SACK, FACK, Westwood, CUBIC.

1. INTRODUCTION

Wireless communication dates back to the end of the nineteenth century when the Maxwell equations showed that the transmission of information could be achieved without the need for a wire. A few years later, experimentations such as those of Marconi proved that wireless transmission may be a reality and for rather long distances. Through the twentieth century, great electronic and propagation discoveries and inventions gave way to many wireless transmission systems. A large number of wireless transmission technologies exist, other systems still being under design. These technologies can be distributed over different network families, based on a network scale. In fig. 1, a now-classical representation is shown of wireless network categories, with the most famous technologies for each type of network.

![Fig. 1 : Illustration of network types](image)

Obviously, the traditional mechanisms such as wifi, Bluetooth etc., to access network are no longer suitable and can not meet the newly upcoming requirement. Fortunately, the Broadband Wireless Access (BWA) technology (such as WiMax), which can meet people’s need to access the Internet conveniently, becomes more popular in recent years.

1.1 WiMAX

WiMAX stands for Worldwide Interoperability for Microwave Access. It is a broadband wireless point-to-multipoint specification from the IEEE 802.16 working group. It is a telecommunications protocol that provides fixed and mobile Internet access. Although initial WiMAX deployments are likely to be for fixed applications, the full potential of WiMAX will be realized only when used for innovative nomadic and mobile broadband applications. The IEEE 802.16 standard defines two possible network topologies:

- PMP (Point-to-Multipoint) topology
- Mesh topology or Mesh mode
As endusers get accustomed to high-speed broadband at home and work, they will demand similar services in a nomadic or mobile context, and many service providers could use WiMAX to meet this demand. For WiMAX, to be able to realize the objective of high speed Internet access, it must effectively support the core transport protocol of the Internet that is Transmission Control Protocol (TCP). Standard TCP congestion control is based on the reduction of its congestion window after a packet loss. Although such behavior works fairly well in the wired networks, where packets losses are almost always caused by link congestion, it becomes rather inefficient when used for data transport in WiMAX networks. In the wireless environment the possible reasons of packet loss include fading, temporary disconnections, and handovers. Even when some losses are compensated in Data Link Layer, a part of them still appears in Transport Layer for high Bit Error Rates (BER).

2. TCP-CONGESTION CONTROL

When the load offered to any network is more than it can handle, congestion builds up. The Internet is no exception. Congestion can be dealt with by employing a principle borrowed from physics: the law of conservation of packets. The idea is to refrain from injecting a new packet into the network until an old one leaves (i.e., is delivered). TCP attempts to achieve this goal by dynamically manipulating the window size.

TCP congestion control consists of: slow start (SS), congestion avoidance (CA), and fast retransmit/fast recovery. The endpoint node concludes that congestion exists when an increase in end-to-end delay is observed. Retransmissions can further aggravate congestion since more packets are injected into the network. As shown in Fig. 4, the TCP sender gradually increases the cwnd size by one packet upon receipt of an ACK, until the first sign of congestion is detected. Thereafter, backoff occurs and the window size is reduced to half the current window. The SS process then begins again gradually.

Clearly, TCP provides a mechanism for reliable end-to-end transmission without requiring any support from intermediate nodes. This is done by making certain assumptions about the network. Specifically, TCP assumes that all packet losses, or unacknowledged packets and delays are caused by congestion and that the loss rate is small. This assumption is not valid in a wireless network, where packet errors are very frequent and caused mostly by poor channel conditions. Responding to packet errors by slowing down does not solve the problem if the errors are not caused by congestion. Instead, it serves only to unnecessarily reduce the throughput. Frequent errors will lead to frequent initiation of slow-start mechanisms, keeping TCP away from achieving steady state throughput.
3. Versions of TCP

The TCP protocol has been extensively tuned to give good performance at the transport layer in the traditional wired network environment. However, TCP in its present form is not well suited for ad hoc networks where packet loss due to broken routes can result in the counterproductive invocation of TCP’s congestion control mechanisms.

3.1 TCP Tahoe

The early TCP implementations followed a Go-Back-N model using the cumulative positive acknowledgement scheme, which required a retransmit timer to expire to resend lost data. TCP Tahoe utilizes the SS, CA and fast retransmit algorithms (RFC 2001). Congestion avoidance in TCP Tahoe relies on setting the cwnd to half the current window size on timeout. Thereafter, on each ACK for new data, the cwnd is increased by 1/cwnd. In addition, information about the receiver’s advertised window and cwnd is also sent. This is, in fact, the congestion avoidance and control method suggested by Van Jacobson and Michael J. Karels.

3.2 TCP Reno

The original retransmission mechanism of TCP is based on a timeout where round-trip time (RTT) and variance estimates are computed by sampling the time between when a segment is sent and when an ACK arrives. This coarseness implies that the time interval between sending a segment that is lost until there is a timeout and the segment is resent is now much longer than necessary. Hence, fast retransmission and fast recovery mechanisms are incorporated into the Reno implementation. TCP Reno will not only retransmit when a coarse-grained timeout occurs, but also when it receives three ACKs from the receiver. In Reno, a duplicate ACK is sent whenever a receiver cannot acknowledge incoming new segments due to the failure of arrivals of previous segments.[16]

3.3 TCP Newreno

TCP New Reno maintains two variables, the congestion window size (cwnd), which initially set to 1 segment, and SS Threshold (ssthresh). At the beginning of the TCP connection, the sender enters the Slow Start (SS) phase, in which it increases the cwnd by 1 segment for every ACK it receives. When cwnd reaches the ssthresh, the TCP sender enters the Congestion Avoidance (CA) phase, in which it increases the cwnd by 1/cwnd for every ACK it receives, in order to slowly probe the available network bandwidth. This linear growth ends when cwnd reaches the receiver’s advertised window, or by the reception of 3 DUPACKs. In the latter case, TCP infers that packets were lost due to link congestion, and it reduces the cwnd by ½ of its current value, in an attempt to prevent network collapse (Fast Recovery). This Additive Increase Multiplicative Decrease (AIM). TCP’s reactive congestion control and avoidance mechanism was proved incapable of handling efficiently mixed-type packet losses happening in wired/wireless heterogeneous networks [16].

3.4 TCP-SACK

Sack is a short name for selective acknowledgement. It works best when various packets got dropped from one window of data. The receiver use the “option” fields of TCP header (SACK option) for notifying the sender of three blocks of non-contiguous set of data received and enqueued by the receiver. The first starting block represent the most recent packet received, and the next blocks represent the most recently reported SACK blocks. The sender keeps a scoreboard in order to provide information about SACK blocks received so far. In this way the sender can conclude that whether there are missing packets at the receiver.

3.5 TCP FACK

Fack is short for Forward Acknowledgment and is based on TCP Reno with Sack. TCP FACK is using the information provided by Sack to compute a better estimate of the amount of data currently in transit (outstanding data). This information is essential for any congestion control algorithm. To estimate the amount of outstanding data, Fack introduces a new variable, fack, denoting the highest sequence number known to have been received plus 1. The variables next and una represent the first byte of data yet to be sent and the first unacknowledged byte, respectively.

3.6 TCP-Westwood

TCP Westwood makes no attempt to correct the problem of non-congestion packet loss in wireless networks solely like Veno, but rather to improve the efficiency of TCP in all heterogeneous networks. It estimates the network’s bandwidth by properly low-pass filtering and averaging the rate of returning acknowledgment packets per RTT. It then uses this bandwidth estimate to adjust the ssthresh and the cwnd to a value close to it when a packet loss is experienced (adaptive decrease). In particular, when three DUPACKs are received, both the cwnd and ssthresh are set equal to the Estimated Bandwidth (BWE) times the minimum measured RTT (RTTmin); when a coarse timeout expires, the ssthresh is set as before, while the cwnd is set equal to one. The improvement of Westwood is a more realistic bandwidth estimation in comparison to TCP Vegas, which significantly increases TCP throughput over wireless links. TCP Westwood has also been tested in against handovers in simulated [16].
3.7 TCP-Cubic
CUBIC is an enhanced version of BIC: it simplifies the BIC window control and improves its TCP-friendliness and RTT-fairness. The window growth function of CUBIC is governed by a cubic function in terms of the elapsed time since the last loss event. TCP-cubic function provides a good stability and scalability. Furthermore, the real-time nature of this transport protocol keeps the window growth rate independent of RTT, which keeps the protocol TCP friendly under both short and long RTT paths.[12]

4. RELATED WORK
Georgi Kirov [1], focuses on the different congestion control mechanisms implemented by the Transmission Control Protocol (TCP). The author presents an experimental estimation of the TCP control algorithms: Slow-Start and Congestion Avoidance without Fast Retransmit, Tahoe that includes Fast Retransmit and Fast Recovery, and Reno using a modified version of the Fast Recovery. The TCP performance analysis is based on different scenarios of the network simulation with low percentages of the packet loss. The results for Reno are slightly better than Tahoe. The advantage of the Reno algorithms in comparison with Tahoe one is when packet loss is detected, the window size is reduced to one half of the current window size and the congestion avoidance, but not slow start is performed.

K. Tsiknas et al. [2], evaluate through simulations the performance characteristics of various TCP schemes namely - TCP New Reno, Vegas, Veno, Westwood and BIC, in WiMAX networks, by taking into account the effects of wireless channel errors, link congestion in both forward and They also suggest Binary Increase Adaptive Decrease (BIAD) paradigm will be benefited by both the quick window expansions of BIC and by the appropriate window adaptations of Westwood, thus offering in overall a better performance in WiMAX networks.

Gerla et al. [3], investigated the impact of the MAC protocol on performance of TCP on multi-hop networks. Chandran et al. [4] proposed the TCP-Feedback (TCP-F) protocol, which uses explicit feedback in the form of route failure and reestablishment control packets. Performance measurements were based on a simple one-hop network, in which the link between the sender and receiver failed/recovered according to an exponential model. Also, the routing protocol was not simulated.

Md. Shohidul Islam et al. [5], focuses on analysis of eleven variants-Tahoe, Full-Tcp, TCP-Asym, Reno, Reno-Asym, Newreno, Newreno-Asym, Sack, Fack, Vegas and Vegas-RBP as source and five - TCPSink, TCPSink-Asym, Sack, DelAck and Sack1-DelAck as destination, implemented in Network Simulator (NS-2). Performance of TCP versions indicates how they respond to various network parameters-propagation delay, bandwidth, TTL (time to live), RTT (round trip time), rate of packet sending and so on. Such analysis is immensely in need to be aware of which TCP is better for a specific criterion, wherefrom an appropriate one will be selected in respective network to optimize traffic goal.

P. Omprakash et al. [6], focused on how TCP will be serviced by WiMAX, and what are the issues that are still open and how they respond to various network parameters-propagation delay, bandwidth, TTL (time to live), RTT (round trip time), rate of packet sending and so on. Such analysis is immensely in need to be aware of which TCP is better for a specific criterion, wherefrom an appropriate one will be selected in respective network to optimize traffic goal.

5. CONCLUSION
A lot of research has been made so far, aiming at suggesting ways to improve the efficiency of TCP in wireless networks. However, there are not extensive comparative studies of TCP performance in WiMAX networks. In this PAPER, we have reviewed the packet’s random losses, correlated lossy links, route failures, and retransmission timeout that lead to network congestion. So in future work, TCP sender side mechanisms to handle these random losses and retransmission timeouts in high delay networks in such a way as to keep congestion window as high as possible, while keeping the congestion under control and keep retransmissions to minimal over WiMAX environment.
Reference


AUTHOR

ASHISH CHHABRA received the B.E. degree in Computer Science and Engineering from JMIT, Radaur, Haryana, India in 2011.

MAULI JOSHI received the B.E. degree in Computer Science and Engineering from BMIT, Jaipur, India and the M.E. degree in Computer Science and Engineering from PDM college of Engineering for Women, Bahadurgarh, Haryana, INDIA.

Presently she is working as Assistant Professor in Maharishi Ved Vyas Engineering college, Jagadhri, Haryana, India.

SHANU MALHOTRA received the B.E. degree in Computer Science and Engineering from Haryana Engineering College, Jagadhari, Haryana, India and the M.E. in Computer Science and Engineering from SIET, Ambala, Haryana in 2009 and 2013.

Presently he is working as Assistant Professor in Institute of Science and Technology, Ambala, Haryana, India.