Planning, Analyzing and Designing of Railway Station Structure

T.Subramani¹, R. Sathiyaraj², K. Raj Kumar³, M. Saravana Kumar⁴, M. Kannan⁵

¹Professor & Dean, Department of Civil Engineering, VMKV Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, India
²Assistant Professor, Department of Civil Engineering, VMKV Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, India
³⁴⁵UG Student, , Department of Civil Engineering, VMKV Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, India

ABSTRACT

Stations are the places wherever trains stop to gather and deposit passengers. It should, therefore, be designed, pleasing to the attention (photo left), convenient and convenient for the traveler additionally as convenient in layout and operation. Stations should be suitably manage and maintained and must be operated safely. The Project railway station, enclosing traffic integration with town and alternative modes of transport, and therefore the rider facilities shall adapt to the look needs taken off during this Manual that square measure the minimum prescribed. This paper study regarding the importance of Railway Transportation and describe the advantages of using railways compared to other Transportation systems. Railway station plan prepared with the Total area 588 Sq.m using AutoCAD. Manual calculations and software analysis also carried for a proposed plan.

Keywords: Software, Analysis, Railway station and AutoCAD

1. INTRODUCTION

Indian Railways (IR) most one in each of the most important Railway networks of the world with over 64,000 route Kilometers (Km) and 7,000 stations. The Indian Railways (IR) overseen through operations Ministry of Railways (MOR), authorities of Asian country and sixteen Zonal Railways headed through trendy Managers. The IR carries larger than 17.5 million passengers day after day and variety of the key Railway stations manage a hundred-two hundred million passengers every year. Most of the Railway stations are engineered over a hundred years past, New Classification of nodal objects on lines for Railway station.

1.1 Objective of the Station Project

- The objective of the Station assignment to be evolved thru this guide is to upgrade the present Station and its environment or construct a brand new Station into a world-magnificence passenger terminal in a manner which guarantees:
 - Advanced offerings to passengers for the design passenger extent certain inside the CA
 - Advanced educate operations (along with allied services e.g., parcel, posts and so forth.) and upkeep facilities affording more flexibility and more suitable operational efficiency for IR
 - Smoother and more secure street traffic drift to and from the station, advanced avenue connectivity with the town and adequate parking inside the station premises;
 - Cutting-Edge and stepped forward places of work, residential quarters and different centers for railway body of workers on the railway land surrounding the station;

1.2 Functional Design

The station will be designed to acquire full weather protection to every passenger/patron who enters the station building. All platforms should be parallel, of the same duration and in square alignment. Platforms and departure concourse have to each have a common place roof with unobstructed big span structural structures that gives in which
viable column-loose area and unobstructed imaginative and prescient throughout the duration and breadth of structures and concourse. Station interiors will be designed with partition partitions which are amenable for bendy area utilization for retails, workplaces, and other passenger services. All passenger regions will be provided with wall and ceiling finishes which do not create echo and further allow an surroundings that allows all public bulletins to be audible to humans anywhere during the most rush period.

1.3 Environmentally Responsible Design and Use of Materials and Resources
A primary objective of the station design will be environmental acceptability, sustainability, and energy efficiency. Station designers will create an environmentally responsible Railway Station that exceeds current standards and practices within the transit industry, creates a healthier, more ecologically responsible Station environment, Station surroundings, and complies with all relevant environmental laws.

Materials used in the station complex have to be eco-friendly. The building should be energy efficient. Rain Water Harvesting, use of Solar Panels for electricity and Waste Management are options to reduce the energy requirement for the Station building. Green/landscaped area must be increased and coordinated with the pedestrian and vehicular traffic.

These environmental goals will be achieved through the application of the Five Pillars:

- Electricity Performance
- Material And Useful Resource Conservation
- Indoor Environmental High-Quality (Ieq)
- Exceptional Operation And Upkeep
- Water Conservation and Site Management.

2. STRUCTURAL DESIGN

2.1 Design Data
Overall length of truss = 28 m
Overall width = 5.5 m
Width of c/c of roof truss = 5 m
Height of column = 11 m
Roofing material = Asbestos cement sheet

\(k_1 = 1.0 \)
\(k_2 = 0.89 \)

(For terrain category 3, building height = 11 m)
\(k_3 = 1.0 \) (for plain land)
\(V_0 = 39 \text{ m/s} \)

Design wind speed, \(\bar{V} = 1 \times 0.89 \times 1.0 \times 39 \)
= 34.17 m/s

Design wind pressure, \(P_w = 0.6 \times 34.17^2 \)
= 0.6 x 34.17²
= 700 N/m²
= 0.700 kN/m²

2.2 Purlins

2.2.1 Dead load
Dead load of the roof covering asbestos cement sheets = 170 N/m²
Dead load of purlin = 300 N/m

\(= 300 \times 5 \)
\(= 1500 \text{ N} \)

2.2.2 Selection of Section
Assume ISMB 500
Weight per meter W = 869 N
Sectional area $A = 11074 \text{ mm}^2$
Depth of section $D = 500 \text{ mm}$
Width of flange $b_f = 180 \text{ mm}$
Thickness of flange $t_f = 17.2 \text{ mm}$
Thickness of web $t_w = 10.2 \text{ mm}$
Moment of inertia $I_z = 45218.3 \times 10^4 \text{ mm}^4$
$I_y = 1369.8 \times 10^4 \text{ mm}^4$
Radius of gyration $r_z = 202.1 \text{ mm}$
$r_y = 35.2 \text{ mm}$
Moduli of section $Z_{ex} = 1808.7 \times 10^3 \text{ mm}^3$
$Z_{ey} = 152.2 \times 10^3 \text{ mm}^3$
Radius at root $r_b = 17 \text{ mm}$
Radius at toe $r_t = 8.5 \text{ mm}$

2.2.3 Effect of axial force

Maximum axial force in the member

$$P = 265 \text{ kN}$$

$$P_{y} = \frac{f_{y}}{f} \times A$$

$$P_{y} = \frac{417.8}{25} \times 11074$$

$$P_{y} = 4178 \text{ kN}$$

$$\frac{P}{P_{y}} = \frac{265}{4178} = 0.063 < 0.15$$

Therefore, the effect of axial force can be neglected.

Hence ok.

2.3 Design Of Column Base

Assume ISMB 500

Weight per meter $W = 869 \text{ N}$
Sectional area $A = 11074 \text{ mm}^2$
Depth of section $D = 500 \text{ mm}$
Width of flange $b_f = 180 \text{ mm}$
Thickness of flange $t_f = 17.2 \text{ mm}$
Thickness of web $t_w = 10.2 \text{ mm}$
Moment of inertia $I_z = 45218.3 \times 10^4 \text{ mm}^4$
$I_y = 1369.8 \times 10^4 \text{ mm}^4$
Radius of gyration $r_z = 202.1 \text{ mm}$
$r_y = 35.2 \text{ mm}$
Moduli of section $Z_{ex} = 1808.7 \times 10^3 \text{ mm}^3$
$Z_{ey} = 152.2 \times 10^3 \text{ mm}^3$
Radius at root $r_b = 17 \text{ mm}$
Radius at toe $r_t = 8.5 \text{ mm}$
Axial load of column $P = 265 \text{ kN}$
Grade of concrete = M25
Bearing strength of concrete $= 0.45 \times 25 = 11.25 \text{ N/mm}^2$
Factored load $P_u = 1.5 \times 265 = 397.5 \text{ kN}$
Area of base plate required:
\[A_{\text{required}} = \frac{F_{\text{load}}}{P_{\text{pressure}}} = \frac{307.5 \times 10^3}{178200} \]
\[= 3533.3 \text{ mm}^2 \]
Provide 600 x 300 mm size plate
Area provided:
\[A_{\text{provided}} = 660 \times 270 \text{ mm}^2 \]
\[= 178200 \text{ mm}^2 \]
Pressure (w) = load/area
\[= (307.5 \times 10^3 / 178200) \]
\[= 2.23 \text{ N/mm}^2 \]

Projections are:
\[a = \frac{600 - 900}{2} = 30 \text{ mm} \]
\[b = \frac{600 - 900}{2} = 30 \text{ mm} \]
\[c = \left(\frac{5.6 \times 10^{-4} \times 180^2 \times 100}{5.6 \times 10^{-4} \times 180^2 \times 100 + 2} \right)^{0.5} \]
\[= 4.65 \text{ mm} \]

3. ABOUT SOFTWARE

STAAD or (STAAD.pro) is a structural evaluation and design software program software firstly developed with the aid of studies Engineers worldwide in 1997. In overdue 2005, research Engineers global became bought by using Bentley structures. Figure 1 shows the 3D view of the structure.

Figure 1 3D View of the Structure

Figure 2 shows the Load Assigned Diagram.
Figure 2 Load Assigned Diagram

Figure 3 shows the Axial Force diagram for inclined member

Figure 3 Axial Force Diagram for Inclined Member

Figure 4 shows the steel designs.

Figure 4 Steel Designs
4. CONCLUSION
Rail transport helps to transfer passengers and items on automobile strolling on rails or Tracks. The greatest advantage of rail transport is that most reliable method of transport as the smallest amount precious by climate conditions which include rains, fog and so on. It has constant routes and schedules; its carrier is added definite, homogeneous and normal in comparison to other mode of carry. Railway delivery is low-budget, quicker and nice proper to sporting heavy and cumbersome items over long distances. So we put together Railway station building plan using AutoCAD and steel structure evaluation using Staad-seasoned for stability test.

References
AUTHOR

Prof. Dr. T. Subramani Working as Professor and Dean of Civil Engineering in Vinayaka Missions Kirupananda Varriyar Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu, India. Having more than 28 years of Teaching experience in Various Engineering Colleges. He is serving as reviewer for many International Journals and also published 250 papers in International Journals. He has presented more than 107 papers in conferences, especially 77 in International and 30 National Level. He has authored 07 books. Guided more than 259 students in PG projects. Currently he is guiding 03 Ph.D., Research Scholars. He is serving as examiner and Valuer for B.E & M.E Degree Theory and Practical Examinations for Madras University, Periyar University, Anna University, Annamalai University and Vinayaka Missions Research Foundation [Deemed to be University]. He is Question paper setter and Valuer for UG and PG Courses of Civil Engineering in number of Universities. He is serving as Chairman of Board Of Studies (Civil Engineering), Vinayaka Missions Research Foundation [Deemed to be University], also a member of Board of studies in Periyar University. He is Life Fellow in Institution of Engineers (India) and Institution of Valuers. Life member in number of Technical Societies and Educational bodies like MISTE, MIGS, MIRC,ISRMITT, UWA, Salem District Small and Tiny Association (SADISSTIA), SPC – Salem Productivity Council. He has delivered much technical talk in various field. He is a Chartered Civil Engineer and Approved Valuer for many banks. He is a Licensed Building Surveyor in Salem City Municipal Corporation-Salem, and Licensed Civil Engineer in Salem Local Planning Authority- Salem. He is the recipient of many prestigious awards.

R. Sathiyaraj working as an Assistant Professor in VMKV Engg. College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu, India . He has completed B.E., Civil Engineering in College of Engineering , Guindy and completed PG in Construction Management in National Institute of Construction Management and Research, Hyderabad. He’s having more than 5 years of Teaching experience in Various Engineering Colleges and he guided many UG projects. He has attended more than 3 international conferences and submitted 2 international journals.

K. Raj Kumar has completed his Diploma in the branch of civil engineering in KLN Polytechnic College, Madurai, Tamilnadu, India and now he is perusing his B.E Degree in the branch of Civil Engineering at V.M.K.V. Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu, India. Salem. 11 years’ Experience, He has well knowledge in AUTOCAD drawing & Bathymetry Survey. His hobbies are playing Cricket, and Listening Music.

M. Saravana Kumar has completed his Diploma in the branch of civil engineering in KSR Polytechnic College, Thiruchankodu, Tamilnadu, India and now he is perusing his B.E Degree in the branch of Civil Engineering at V.M.K.V. Engineering College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu, India. Salem. 4 years’ Experience, He has well knowledge in AUTOCAD drawing. His hobbies are playing Cricket, and football.

M. Kannan has completed his diploma in the branch of civil engineering in K.L Rangaswami memorial Polytechnic college, Madurai, Tamil Nadu, India and now he is perusing his B.E degree in the Branch of civil Engineering at V.M.K.V Engineering college, Vinayaka Missions University (Deemed to be university), Salem, Tamil