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ABSTRACT 

The manned lunar missions Apollo 15, 16, and 17 carried a laser altimeter for determination of lunar topography beneath the 
ground track. Errors in altimetry are primarily due to limitations in orbit propagation due to incomplete, low-resolution gravity 
models. Systematic biases reflecting predictable orbit errors may present in altimetry data. This research examines if biases in 
contemporary Apollo altimetry data may be addressed by simply repropagating Apollo state vectors with modern gravity 
models.  
Keywords: Laser Altimetry, Lunar Gravity Models, Orbit Determination, Topography. 

1. INTRODUCTION  

Apollo 15, 16 and 17 included a laser altimeter. The instrument was mounted in the Command/Service Module SIM 
Bay and pointed toward the nadir. According to Kaula, the instrument consisted of an 0.25 J Q-switched ruby laser 
with a pulse-width of 10 nanoseconds. [1] It  had a ranging accuracy of ±2 meters and a footprint of roughly 30 meters 
in diameter at the nominal spacecraft altitude of 110 km.  The sampling interval could be adjusted between 16 and 32 
seconds, which corresponds to a few tens of kilometers at Apollo orbital velocities. While its inclusion was to provide a 
scale for the mapping camera, the altimeter also provided precise transects of the lunar topography. This enabled study 
of the lunar topography on both broad and regional spatial scales at a level more precise than what orbital photography 
could provide. 
The limiting factor in Apollo altimetry was the orbit. Operational navigation models were limited to degree 3. This was 
due, in part to computational limitations and lack of data of the gravity of the lunar far side. According to Kaula the 
orbit error was estimated to be on the order of ±400 meters. [1]-[4] The slow rotation of the Moon meant that both the 
lunar gravity field and topography was similar for each altimetry swath. This, in turn, meant that altimetry data were 
consistent (~10 meters) between orbits and orbit errors could be ignored at small spatial scales. 
However, errors in orbit determination would affect results at broad spatial scales. A key result was the determination 
of the offset of the center of figure of the Moon from its center of mass.  The center of mass of the moon is known to be 
roughly 2 km closer to Earth than its geometric center of figure, due in part to the increased crustal thickness associated 
with the lunar highlands on the far side. 
Biases in altimetry are predominantly due to radial orbit biases. A spacecraft’s Keplerian orbit radius may be expanded 
out to the first order in mean anomaly M  as 

r
a

�| 1�� ecosM                                           (1) 

To the first order, errors in the orbit will impact the radius in the form: 
�' r �| �' a �� a�' ecosM                                           (2) 
An error in semi-major axis will present itself as a constant radial offset, but, more importantly, will introduce a small 
offset in mean motion, impacting the relationship between mean anomaly and time. This is not reflected in the above 
equation, which assumes mean anomaly is known perfectly, but secondary effect would be visible in the second 
harmonic. A bias in the eccentricity shows up in the first harmonic. When determining broad scale, low-degree 
properties of the lunar figure, errors in the semi-major axis primarily affect estimates the mean radius (degree 0), while 
errors in the eccentricity impact estimates of the center of figure’s offset from the center of mass (degree 1). 
In the current research, the orbits of the Apollo spacecraft are propagated using modern gravity models derived from 
the GRAIL mission to assess the impact of errors in radial position on the altimetry.   
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2. DATA  ANALYSIS  

2.1 L-1 Potential Model 

The L-1 potential model was the lunar gravitational field used for Apollo navigation and orbit determination. It was 
first described by Wollenhaupt of the Manned Spacecraft Centre. [5] The model consists of five coefficients out to a 
maximum degree of 3.  The model was limited by computational power and the absence of gravity observations of 
gravity on the lunar farside.  This model was used to determine all orbits used to produce Apollo altimetry results, and 
will be used for comparison with the modern GRAIL model. 
The parameters of the model as given by Kaula are listed in the table below. [1] 

Table 1: Model Parameters 
Coefficient Values 

(x106)  
C20 -92.6215 
C22 20.716 
C30 7.900 
C31 34.000 
C33 2.583 

2.2 GRAIL Potential Model  

The Gravity Recovery and Interior Laboratory (GRAIL) was a pair of spacecrafts sent to measure the lunar gravity 
field. The spacecraft was tracked from Earth, but also used a Ka-band intersatellite ranging system to precisely track 
changes in range between the two satellites to less than a micron.  Because the intersatellite tracking was possible 
without tracking from Earth, GRAIL was able to accurately measure gravity on the lunar far side.  This was historically 
a major restriction on lunar gravity models. 
Gravity models derived from GRAIL are adopted from [6]. For this analysis, JPL Lunar gravity field solution 
GL0900C, a degree-900 solution is used. Plotted below are the free-air gravity anomalies from the L-1 gravity model 
compared with GRACE’s degree-3 model. The maps employ the equirectangular projection centred on 0º E with 30º 
graduation in parallels and meridians. 

 
Figure 1 Model comparison for free-air gravity anomalies 

The degree-100 GRAIL free-air anomalies are shown below with selected Apollo ground tracks. 
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Figure 2 Degree-100 GRAIL free-air anomalies  

 

2.3 LOLA Topography  Model 

The Lunar Orbiter Laser Altimeter (LOLA) is an instrument mounted on Lunar Reconnaissance Orbiter, a spacecraft 
launched in 2009 to map the Moon for future exploration. LOLA’s purpose is to characterize lunar surface optical 
characteristics and produce topographic models of the lunar surface. LOLA’s altimetry benefits from nearly four 
decades of technical improvements. The most important of these is that LRO benefits from a vastly improved gravity 
model of the Moon compared to Apollo’s simpler L-1 model. Topographic models derived from LOLA altimetry are 
available as spherical harmonics. [7] For this analysis, LTM04 degree 100 product is used. This corresponds to a 110 
km spatial resolution, but is sufficient for this analysis, which focuses on broad-scale topography. This is roughly 2-3 
times the scale of the sampling interval of the Apollo laser altimeter. 
The topography model is shown below evaluated to degree 100 with selected Apollo ground tracks overlain (revolutions 
15, 17, and 15 for Apollo 15-17, respectively). The map employs the equirectangular projection centred on 0º E with 
30º graduation in parallels and meridians. 
 

 
Figure 3 Degree-100 Topography model 
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The following figure illustrates the topography beneath these ground tracks. 
  

 
Figure 4 Topography beneath ground tracks 

 

2.4 ASU Apollo State Vectors & Dayside Altimetry 

Arizona State University (ASU) Apollo Image Archive hosts digitized state vectors from solutions originally processed 
in the 1970s using the L-1 gravity model. These solutions are used to locate and scale Apollo orbital photography 
products. They include laser altimeter ranges and selenocentric position and velocity. This data is available as scans 
and as a convenient comma-separated value file. For this analysis, Metric State Vector CSV files are used. [8] 
 

2.5 Orbit Propa gation 

The orbit model used to propagate the Apollo spacecraft in this re-analysis used Cowell’s method to propagate 
accelerations from a spherical-harmonic representation of the lunar gravity field and third-body perturbations from 
Earth. The propagation is performed in a rotating, selenocentric frame. To compensate for the rotation of the Moon, 
rotational Coriolis and centrifugal terms are added to the accelerations from gravity. Accelerations from the lunar 
spherical harmonics are computed from the gradient of the potential, 
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Here, V is the potential, r is the radial coordinate, �I is the selenocentric latitude, �O is the selenocentric longitude, 

�Pis its gravitational parameter, am
is the radius of the Moon, l is the spherical harmonic degree, mis the spherical 

harmonic order, and Clm,Slm
are the coefficients of the lunar gravity field. Finally, Plm sin�I�� �� is the normalized 

associated Legendre polynomial, following the geodesy normalization conventions of Kaula. [1] 
The position of the Earth relative to the Moon for the purposes of third-body perturbations is interpolated from tables 
obtained from JPL Horizons, which is based on the DE-405 ephemeris. [9] Because the orbit propagation was 
conducted in a rotating reference frame, the sub-Earth selenocentric latitude, longitude, and range were needed, instead 
of the inertial position of Earth. Solar perturbations are not as prominent and don’t become similar in magnitude to 
lunar gravity until around degree 60. It was therefore not included. Solar radiation pressure on the command module 
has much smaller magnitude than any acceleration in low lunar orbit due to lunar gravity out to degree ~150 and is 
therefore neglected in this analysis. These relationships are shown in the acceleration degree variance plot below. 
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Figure 5 Acceleration degree variance plot 

Acceleration degree variance is computed: 
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Propagating the nominal orbits of the Apollo command modules, reveals acceleration anomalies due to strong surface 
density anomalies (termed mass concentrations, or “mascons”). The mascons brought about abrupt net impulses to their 
orbits as the spacecraft flew over them. These flyovers would add the uncertainty associated with Apollo orbits. The 
figure below shows these accelerations in the radial, in-track (along the orbit conormal), and cross-track (orbit normal) 
directions with respect to those of a point-mass model. These are plotted along with the accelerations along the line of 
sight to Earth on the near side to illustrate observational sensitivity to these gravity anomalies in the differentiated 
range and range-rate tracking from Earth. 
 

 
Figure 5 Apollo command modules  

Apollo 15 passes over three major mascons. From west to east: Crisium, Serenitatis and Cognitum. Apollo 16, in its 
more equatorial orbit experiences the influence of these mascons less severely. Apollo 17’s ground track takes it 
directly over Crisium and close to Serenitatis. In general, cross-track accelerations are small compared to along-track 
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and radial accelerations. This means that changes to the orbital plane will be small. However, along-track and radial 
accelerations exceed 100 mGal (1 Gal = 1 cm/s2) over short spatial scales, meaning they can abruptly change the orbit’s 
semi-major axis, eccentricity and argument of periapsis. 
Apollo 16 and 17 experience strong radial and along-track accelerations as they pass over the lunar far side. These 
accelerations would have been unobservable by ground tracking, but would have nonetheless significantly altered the 
command module’s orbital parameters by the time it’s re-acquired by tracking stations on Earth. 

2.6 Case Study: Apollo 15 

Kaula presented altimetry data from one orbit in the form of latitude, longitude and topographic height derived from 
altimetry. [2] From these observations, they fit a sinusoid to derive the approximate centre-of-figure offset and 
ellipticity within the Apollo 15 command module’s orbital plane. This sinusoid is of the form: 
 

h(�O) � �' R�� A1cos(�O�� �O1) �� A2 cos 2(�O�� �O2)�� ��                           (5)  

 

The term �' Ris the offset of the mean radius of the altimetry from the mean radius of the planet. Terms A1
and A2

 

represent the offset of the centre of mass from the planet’s topographic centre of figure and the amplitude of the in-

plane ellipticity. These parameters can be related to the degree-1 spherical harmonics C11
and S11

, but the near-

equatorial orbits of the Apollo command modules left them relatively insensitive to the centre of figure offset along the 

z axis C10�� ��. As previously established, the A1
 term may be conflated with �� a�' e and the �' R term may be 

conflated with the error in semi-major axis. In other words, errors in the eccentricity and semi-major axis will 
contribute to errors in centre-of-figure offset and mean radius, respectively. The near-equatorial nature of the Apollo 
orbits means that longitude may be approximately equated to mean anomaly. 
These data may be directly compared with the LOLA topography model for the same latitudes and longitudes. 
Assuming no gross instrumental biases in the altimetry measurements themselves, the differences between these 
topography models may be used to explore the orbit radial biases. Optical character recognition is used to convert the 
tables in the scans of the original Kaula tables to machine-readable ASCII.  
Plotted below is the Apollo 15 altimetry data alongside the LOLA topography for the same latitudes and longitudes. 
The rough far side highlands are difficult to compare, but the smoother maria on the near side show a clear systematic 
bias. The black curve is a fit to the Apollo altimetry data as discussed in the harmonic equation above. 
 

 
Figure 6 Apollo 15 altimetry and LOLA topography 

 
The next plot shows the difference between the Apollo data and the LOLA model. A harmonic fit to the data gives the 
approximate orbit radial bias. This plot is compared with the radial bias derived from a degree-100 orbit propagation 
vs. a propagation using the L-1 model. The initial state vector comes from the ASU photography support data at the 
start of revolution 15. This plot shows that the radial orbit bias derived from high-fidelity propagation agrees with the 
biases in the observations on broad scales.  The spacecraft is moving from east to west and the degree-100 GRAIL 
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gravity model initially agrees with the L-1 until the spacecraft passes over the Serenitatis mascon. The orbit abruptly 
acquires a new sinusoidal radial variation of amplitude ~400 m. attributable to changes in the eccentricity caused by the 
mascon’s acceleration. This sinusoidal variation largely agrees in phase and amplitude with the best-fit second order 
sinusoidal fit to the differences between the Apollo 15 and LOLA models.  The removal of this sinusoid drops the RMS 
of the topography residuals from 900 m to 780 m.  The agreement can be seen in the plot. 
 

 
Figure 7 Variation in Apollo data and the LOLA model 

 
The errors in latitude and longitude are on the order of ±1 km. Because of the shallow slopes of most of the lunar 
surface, particularly on the near side, the errors in the topography due to position error are in the order of tens of 
meters. The nearside errors have a standard deviation of 12 meters, while the farside errors have a standard deviation 
of 30 meters. This is shown in the figure below. The latter 12 m variability is consistent with the 10 m uncertainties 
reported by Kaula. [2]-[4] Note the periodicity of these biases. 
 

 
Figure 8 Bias and errors 

 
This demonstrates that horizontal position errors are not as important to the determination of topography as orbit 
errors. The scale of errors on the near side is comparable to that of the instruments. 
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2.7 Broad Scale Features 

Kaula presented three determinations of the lunar radius and in-plane centre of mass offset (CM Offset). [4] These 
figure determinations can be compared over the same ground tracks with the LOLA topography model. The RMS 
difference of these two offset sinusoids over one period are computed analytically, and this is represented in the 
penultimate column of the table below.  In the last column, best-fit sinusoid to the radial differences between the 
GRAIL model and, its RMS difference with the sinusoid representing the difference between the Apollo and LOLA 
figure estimates are computed. This essentially tests if adding long-wavelength corrections based on orbit errors to the 
LOLA-based figure estimate explains the Apollo-era results. 

Table 2: Data comparison 
  Radius-1737.4 

km (km) 
CM Offset 

(km) 
CM Offset 

Direction (°) 
RMS 

difference (m) 
RMS difference 
(with orbit, m)  

Apollo 15 Apollo -0.10 2.10 205.00   
Rev. 15 LOLA 0.10 1.97 204.20 270.00 380.00 

Apollo 16 Apollo 0.70 2.90 205.00   
Rev. 17 LOLA 0.93 2.78 203.40 240.00 305.00 

Apollo 17 Apollo 0.00 2.30 203.00   
Rev.15 LOLA 0.38 2.22 204.10 390.00 240.00 

 
Surprisingly, in two of the three cases, adding orbit corrections increases the RMS difference between the figure 
estimates. This is unsurprising for Apollo 16, which had the least severe perturbations from lunar mascons. Apollo 17, 
on the other hand, flew directly over two major mascons and had the most severe perturbations to its orbit. Corrections 
based on gravity model differences nearly cut the RMS of the Apollo figure determination with respect to the LOLA 
figure in half. 
Comparing of the ASU altimeter ranges and orbits with LOLA topography are considered. Unfortunately, ASU 
altimeter slant ranges cannot be compared over broad scales because they are orbital photography support products and 
therefore only available over the lunar day side. Fitting a sinusoid to a single hemisphere would not produce reliable 
results. 

3. CONCLUSION 

Given the evidence from the Apollo 15 case study presented above, it is clear that Apollo altimetry can largely be 
corrected by repropagating the orbits from state vectors determined using low resolution gravity fields.  The broad-scale 
agreement between the topography errors and orbit errors is the most profound result of this analysis. 
This solution is rudimentary, however. Analysis of long-wavelength radial orbit errors in the section on broad-scale 
features shows that results can only be improved by repropagation in one of three cases. A truly robust method of 
correcting the Apollo state vectors and altimetry would involve revisiting the original tracking data and determining 
the Apollo orbits with modern GRAIL gravity fields.  Nonetheless, repropagating the Apollo orbits has proven to be a 
step forward.  Recomputing Apollo lunar altimetry with modern gravity fields and orbit determination techniques could 
revitalize this data for modern lunar science. 
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