Energy Conservation by Duty Cycle Scheduling in Path Connected Clusters Wireless Sensor Network

Trupti Shah¹, Madhav Ingle²

¹Trupti Shah JSPM’s JSCOE, Hadapsar, Pune-28
²Prof. Madhav Ingle JSCOE, Hadapsar, Pune-28

Abstract

Wireless sensor networks (WSNs) have become popular due to their application in various fields such as home health care, military surveillance, and environmental science. For long-term and low-cost monitoring applications, Wireless Sensor Networks (WSNs) are commonly used. The key issue involved in wireless sensor networks is the energy efficiency of sensor nodes. Because nodes in WSNs are powered by small irreplaceable and non rechargeable batteries. Existing research efforts show that clustering is an efficient method to prolong the lifetime of WSN network. In this paper, we present a new scheduling method Duty-cycle Backbone Scheduling (DCBS). Our proposed technique, DCBS, employs heterogeneous scheduling. Our simulation studies verify the effectiveness and efficiency of the proposed DCBS technique, and shows that our proposed technique is superior to the existing techniques.

Keywords: Wireless sensor networks, duty cycle scheduling, routing, and path-connected-clusters.

1. INTRODUCTION

In WSN it is important to address addressing and routing challenges. In a dense WSN network a per-node addressing scheme will be expensive due to the large address space. In addition, per-node addresses are required to be allocated and managed according to the change in the network topology. Therefore, address allocation is a challenging task in the dense WSN network which is often underestimated [10]. On the other hand, addressing play an important role in the routing. Routing involves discovery of paths from source nodes to destination nodes based on their network addresses. End-to-end path discovery incurs high communication overheads. Therefore, it is crucial to design an efficient and effective WSNs protocol for addressing and routing.

Energy consumption of sensor nodes is a major concern in WSNs and active field of research. To increase the usage of WSN in daily life. Energy saving techniques play an important role and are critical to the success of WSNs. A lot of research work has been dedicated to study duty-cycling techniques for power saving [2], [4], [15]. However, existing duty cycling approaches do not consider the redundancy in WSNs, so all the sensors’ cycles are identical.

1.1. Our Observations

Existing research efforts and solutions lack to provide an efficient and effective addressing and routing protocol for WSNs. In WSNs, we can form a backbone to maintain the connectivity in multi-hop communication without sacrificing the reliability. The overall energy consumption of the network can be reduced by using a single backbone. However, it has no effects on the network lifetime. Hence, to extend the network lifetime, it is necessary to rotate backbones.

1.2. Our Solution

In this paper, we further extend the path-connected-cluster (PCC) using Duty-cycle Backbone Scheduling (DCBS) technique, where a cluster of sensor nodes is used to deploy in the regions that require intensive sensing. Clusters are physically separated and connected by long paths for occasional communications. Our proposed technique, DCBS, employs heterogeneous scheduling. In DCBS to preserve network connectivity, backbone nodes work with duty-cycling and non-backbone nodes turn-off radios to save energy.

The primary goal of our research is to propose a light addressing and routing protocol for WSNs. Our approach is based on the principle of Chia-Hung’s [14] address assignment. However, our proposed technique leads to a compact address usage as compared to the original Chia-Hungs design. Moreover, using our addressing, low communication overheads is incurred by routing. Given a WSN, we present a scheme to automatically separate paths from clusters in a distributed manner. Then we propose a Chia-Hung’s like address assignment scheme for a WSN.

1.3. Our Contributions

We proposed a light addressing and routing protocol for a path-connected-cluster (PCC) wireless sensor network (WSN). To summarize, this paper makes the following contributions:

• We propose a new scheduling method called Duty-cycle Backbone Scheduling (DCBS). It uses a light addressing and routing scheme for PCC-WSN.
• Our proposed system uses a heterogeneous approach in cluster formation, so it increases the lifetime of sensor nodes.
• Our extensive simulation results show the performance of DCBS.
2. RELATED WORK
A Wireless Sensor Network is comprised of sensor nodes which have limited capability of sensing, computing, and communication. Nodes in the sensor network typically contain one or more sensors, a radio transmitter/receiver, a small microcontroller to perform limited computations and a battery as an energy source.

Extensive research efforts have been taken in order to minimize the energy consumption by designing energy efficient protocols at different layers. In [11], the authors presented a technique for disaster prevention and environmental monitoring for distributed sensor networks. Some sensor network applications require real-time communication with minimum routing delay. To achieve this, many research efforts proposed real-time routing protocols such as RPAR [3], SPEED [8], and MM-SPEED [6]. These works proposed systems with minimal delay in routing. To control the topology of wireless sensor network existing mechanisms either control transmission power or impose a hierarchy on the network. Hierarchical approaches use clustering to change the logical structure of the network

In [5], the authors propose the clustering protocol that aims at the formation of stable clusters in WSN, where node locations are mostly fixed. Ali et. al., [1], proposed a node addressing naming method that assigns locally unique addresses and reduces the address size. The focus of his work is on clustering routing approaches. In [7], proposed a routing algorithm for multi-sink sensor networks using a reliability based path selection approach. In [12], the authors proposed the Priority-based Coverage-aware Congestion Control (PCC) algorithm which is fair, distributed, and priority-distinct. It provides higher priority to packets with the event information in which the sink is more interested. It also gives a fair chance to all sensors to send packets to the sink, irrespective of their locations in the network.

3. PROPOSED SYSTEM
In this section, we discuss algorithm and mathematical model of our proposed protocol, Duty-cycle Backbone Scheduling (DCBS).

Algorithm 1 describes our proposed DCBS algorithm for effective routing in WSN. Every backbone node has hoptosink value set as ∞. Only the sink’s hoptosink value is set to 0 (zero). Sink sends its hoptosink value to neighboring backbone nodes. Every receiving node compares its own hoptosink value with the received value. If the received value is less than the current value then 1 (one) will be added to the received value and that value becomes the new current hoptosink value. The neighboring nodes will send their new hoptosink value to their neighbors until all nodes in the network find their distance to the Sink. In this way routing table is built for WSN network. Once routing table is built in by nodes in the network, they can send sensed information to the sink node. Our approach finds a disjoint set of backbone paths from sensor node to the Sink.

3.1. Addressing Assignment And Routing
Our proposed technique uses a two level addressing scheme to reduce the address space. We used Level -1 addressing for each cluster, which is formed of nodes with sensed data. In level-2 addressing, we assign each individual node in the cluster an n – bit address. Similar, to two levels of addressing, we also design a two-level routing approach. In level-1 routing, packets are routed from a node to cluster head (also called as super node), and level-2 routing involves the routing of packets within supernodes or supernode to the sink.

Algorithm 1 – Duty cycle backbone scheduling Algorithm for effective routing is WSN

1. Input: Collection of nodes V, u, v ∈ V, hop-to-sink(u) =⇒ hoptosink value of node u, sn =⇒ supernode of the cluster.
2. Output: Routing table formation in each node and end-to-end path between node (u) and sink (S)
∀ u ∈ V , hoptosink value =⇒ ∞
Sink’s (S) hoptosink value =⇒ 0
3. Initialize all hoptosink value of all nodes
4. S sends hoptosink value to its neighbors. Propagation of value from sink to its neighbors.
for all ∀ v ∈ V \ ∩ v ∈ neighbor of S do v =⇒ S-hoptosink-val
end for
5. neighbors update their hoptosink value for all ∀ u ∈ V do
if (S-hoptosink-val < u-hoptosink-val)
u-hoptosink-val = S-hoptosink-val + 1 end for

nodes with sensed data come together and form cluster
∀ s ∈ V form a cluster
6. Data delivery to sink (S)
v =⇒ sn . node (v) sends data to supernode (sn) in the cluster
sn =⇒ S . supernode (sn) in the cluster sends data to Sink
3.2. Dynamic Controls to Change in Topology of WSN

In this section, we discuss how our proposed protocol deals with the changes in WSN topology due to insertion of new nodes, removal of nodes, or dead nodes. To address these issues, we follow the specification in IEEE 802.15.4. A leaving node disassociates with its parent by issuing a NLM E−LEAVE request. The network addresses assigned to it and its children will be released. Using an aging process, a dead node can be detected by its parent and the addresses assigned to the dead node and its children will be released. When a new node inserted into the network, it issues a NLM E−JOIN request. Then a neighboring router which receives the request and still has routing capacities may accept it. Note that this can be conducted within a super-node.

4. PROGRAMERS DESIGN

4.1 Mathematical Model

In this section we will discuss mathematical model of proposed system:

Let \(N \) be the total number of nodes in wireless sensor network, which is a path-connected cluster (PCC). Let \(B = \{B_1, B_2, B_3, ..., B_m\} \) be the total \(m \) number of backbone nodes in the PCC used for connecting the cluster with each other. The number of duty cycle round \(C \) can be calculated as:

\[
C = \frac{V \times E}{n \times \epsilon}
\]

where, \(V \) is number of nodes in the backbone, \(E \) is initial energy of the node, \(n \) indicates number of nodes in one set, and \(\epsilon \) is energy consumption per node in each round.

Our aim to find disjoint set of backbone paths \(\{P_1, P_2, P_s\} \) that meets following criteria:

1) every sensor node in the PCC cluster has a route to any other node in the PCC,

2) Every cluster in PCC has at least one active backbone path.

Let ‘T’ be the time for which each node is in sleep mode.

Schedule the disjoint set of backbone paths as\(\{p_1, ..., p_i, T\}, \{p_2, ..., p_j, T\}, \{p_1, ..., p_k, T\} \) for \(T \) time upto \(C \) rounds.

4.2 Evaluation & Experimental Results

4.2.1. Simulation Setup

We simulate the proposed system using custom simulator running on the Ubuntu 12.04 operating system. We run our algorithm on several random networks created by randomly distributing nodes. The aim of this test was to evaluate situation-specific performance in networks. We developed a custom simulator software in JAVA to run simulations.

4.2.2. Energy Dissipation in Clustering

In this section, our algorithm (DCBS) will be compared to other protocols. The algorithms will be compared based on energy dissipation in clustering. The network lifetime can be prolonged by minimizing the energy dissipation in clusters. In addition, reducing the energy dissipation also increases the efficiency of clustering. Figure 1 shows our initial stage results of the number of nodes and energy dissipation in clusters.

Following are the simulation results:

- From Fig.1 it is observed that there is significant amount of saving in energy with proposed DCBS protocol over the conventionally used existing protocol.
- As we observe the saving in energy, this also accounts to reduction in operating cost. Refer Fig.2.
- DCBS protocol however requires additional time for data transfer, as this accounts to activation of nodes (in wait state) while this is not the case in existing protocol as here all the nodes are in active condition always. Refer Fig.3

Numbers of active backbone nodes are drastically reduced with DCBS. This had prolonged advantage in terms of operating cost and overall network life. Refer Fig. 4 and Fig. 5 respectively.
Fig. 2. Reduction in Operating cost with DCBS protocol

Fig. 3. Comparison of Time required for Data Transfer

Fig. 4. Comparison: Number of Active Backbone Nodes

Fig. 5. Improvement in Network life with DCBS over existing protocol
5. CONCLUSION
We propose an energy efficient addressing and routing protocol, Duty-Cycle Backbone Scheduling (DCBS), for path-connected-cluster (PCC) wireless sensor network (WSN). Existing research efforts show that clustering is an efficient method to prolong the lifetime of WSN network.

We used a clustering approach in DCBS. The proposed DCBS protocol employs heterogeneous scheduling. In DCBS to preserve network connectivity, backbone nodes work with duty-cycling and non-backbone nodes turn off radios to save energy.

Lifetime of a network is determined by the minimum lifetime of nodes in the network. If no sleep scheduling technique is used, all the nodes work simultaneously and network lifetime decreases drastically. DCBS achieves longer lifetime.

Our simulation studies verify the effectiveness and efficiency of the proposed DCBS technique, and show that our proposed technique is superior to the existing techniques.

ACKNOWLEDGEMENT
The satisfaction achieves after successful completion of any task would be incomplete without mentioning those people who are responsible to complete that task. We are grateful to many people who contributed to the completion of this research. We would like to express our sincere thanks to Prof. S.M.Shinde and our principal Dr. M.G.Jadhav to providing necessary facilities for completion of paper work.

References