Design and Fabrication of an Electrically Small Meander Line Antenna System for Wireless Communication

Mr. Prakash S. Andhare¹, Prof. Abbhilasha Mishra²

PG Student, Marathwada Institute of Technology, Aurangabad
Associate Professor, Marathwada Institute of Technology, Aurangabad

Abstract
Antenna integration and miniaturization are two major challenges. We propose an electrically small antenna (ESA) that is based on the meander line antenna structure that operates in the 2.4-2.7 GHz ISM band. The proposed antenna has measured center frequency of 2.52 GHz with 240 MHz bandwidth. The proposed antenna is designed for USB based application with dimensions of 14.5X26.6 mm. The performance parameters of antenna are optimized to achieve an Omni directional radiation pattern with reasonably wide impedance bandwidth and high gain.

Keywords:- Electrically Small Antenna (ESA), Meander Line, VSWR, USB application

1. Introduction
Antenna integration and miniaturization are two major challenges. The meander line antenna is a type of printed antenna that achieves miniaturization in size by embedding the wire structure on a dielectric substrate. In basic form meander line antenna is a combination of conventional wire and planar strip line. Benefits include configuration simplicity, easy integration to a wireless device, inexpensive and potential for low SAR features [1]. Meander line antenna is one type of the micro strip antennas. The meander line antenna was proposed by Rashed and Tai for reduce the resonant length [2]. Because recent years there are lot of changes in wireless communication technologies such as increase in data rate, MIMO system and at same time antenna size and weight is reduced. There are varieties of techniques to reduce the size of microstrip antennas: use of high permittivity substrates [3], shorting pins [4], and meander line. Inserting suitable slots in radiating patch is also a common technique in reducing the dimensions of patch antenna. The slots introduce parasitic capacitances which tend to reduce the resonant frequency of the antenna . For wireless communications applications such as USB Dongle, radio frequency identification tags, Bluetooth headset, Mobile phone Mean dear line antenna is convincing solution [5]. Meandering the path increases the path over which the surface current flows and that eventually results in lowering of the resonant frequency than the straight wire antenna of same dimensions. The electrical small antenna defines as the largest dimension of the antenna is not more than one-tenth of a wavelength (λ/10) [6]. Electrically small antennas (ESA) are antennas that can be inclosed within a radian sphere, meaning that the relationship

\[K_a = 1 \text{or} a = 1/k, \]

Where \(k = 2\pi/\lambda \) and \(a \) is the largest diameter of the circle inclosing the complete antenna, has to be satisfied [7]. ESAs have high input reactance and low input resistance. Therefore, they have high Quality factor (Q) and low frequency bandwidth. In [8], an expression for the Q was derived and is given by,

\[Q = \frac{1}{2\pi} \]

Meander antenna is electrically small antenna .The design of meander line antenna is a set of horizontal and vertical lines. Combination of horizontal and vertical lines forms turns. Number of turns increases efficiency increases. In case of meander line if meander spacing is increase resonant frequency decreases. At the same meander separation increase resonant frequency decreases [9]. The meander line element consists of vertical and horizontal line so it formed a series of sets of right angled bends. The polarization of antenna depends on radiations from the bend. The spacing between two bends is very vital, where if the bends are too close to each other, then cross coupling will be more, which affects the polarization purity of the resultant radiation pattern. In other case the spacing is limited due to the available array grid space and also the polarization of the radiated field will vary with the spacing between the bends, and the spacing between the micro strip lines [10]. A meander antenna is an extension of the basic folded antenna and frequencies much lower than resonances of a single element antenna of equal length. Radiation efficiency of meander line antenna is good as compare to conventional half and quarter wavelength antennas. Antenna size reduction factor \(\beta \) depends primarily on the number of meander elements per wavelength and spacing of element widths of the rectangular loops [11]. Planar meander line antenna with added quarter wave parasitic element at the both side of the meander can
produce double beam radiation pattern at frequencies much lower than resonances of a single-element antenna of equal length [12]. A planar meander line monopole antenna element is the most suitable choice for the MIMO antenna system [13]. In this work, we design and fabricate a single input single output MLA with a center frequency around 2.52 GHz, bandwidth of at least 240 MHz and total size of an antenna 14.5X 26.6 mm. This paper presents an overview design printed meander antennas in the ISM band by providing a good initial geometrical configuration of the antenna. This article has been divided into four sections. Section I describes introduction. Section II describes in detail modeling of the meander line antenna. The results obtained from our proposed antenna are listed and discussed in Section III. Finally concluding remarks are presented in Section IV.

2. MODELING OF THE ANTENNAS

A meander line antenna shrinks the electrical length of a regular monopole or dipole antenna by folding its length back and forth to create a structure with multiple turns. This method has advantages when antennas with low frequency of operation are of interest, since this will reduce the size of the antenna significantly. The size of the antenna will even get smaller because of the use of a dielectric substrate. Printed meander antennas usually have good radiation efficiency and close to Omni-directional radiation patterns.

The designed single Meander antenna structure is shown in Figure 1. Antenna dimensions were optimized using HFSS. The dimensions of the antenna are in mm and given by, L=26.6, W=14.5, Lg=11.32, W1=9.6, W2=0.62, W3=0.62, W4 =1.86, W5=3.1, L1= and L2=. The antenna was etched on an FR-4 substrate with 1.59 mm thickness, copper was used. A right angle PCB mount SMA connector was used as the feeding port for the antenna.

3. RESULTS AND DISCUSSION

Figure 2 shows the top views of the fabricated single MLA antenna. The radius of the sphere including this antenna is 1.45 cm. Figure 3 shows the measured and simulated reflection coefficients. An HP 8514B Network Analyzer was used to conduct this measurement. The correlation between the two is very well observed. The simulated f_c was 2.52 GHz, while the measured one was 2.50 GHz. The simulated -10 dB bandwidth was 240 MHz while the measured one was 195 MHz. This shows a good match between the two, although some discrepancy is expected due to the presence of the GND plane. The MLA total size is 14.5 X 26.6 mm.
This section presents the simulated results of modified MLA. HFSS has been used to simulate the antenna for several performance parameters such as impedance bandwidth, radiation patterns and VSWR. The parametric study of the antennas reveals the band behavior. The antenna is designed to operate on 2.5 GHz ISM band. Fig. 3 illustrates the S11 of MLA; where it shows a return loss of -39.1 dB for the operation on 2.5 GHz. The impedance bandwidth calculated at -10 dB scale for this band is 240 MHz. Figure 4 shows the simulated and measured VSWR for proposed MLA antenna. The simulated current distribution on the Surface of MLA is presented in Fig.5. In small antennas, the ground plane plays a major part in radiation. As a consequence of the change in ground plane size, shift in the resonant frequencies has been noticed. The current distribution on the ground plane and its effect on the resonant frequencies were also observed during simulation.
The measured radiation patterns for the single element MLA antenna are shown in figure 6 (a) (b) respectively.

4. CONCLUSIONS

A compact electrically small antenna (ESA) design and fabrication that is based on the meander antenna is presented. The antenna is intended for the use in the 2.4–2.7 GHz of the USB applications. Simulation and measurement results are compared. The single antenna has a measured center frequency of 2.52 GHz, bandwidth of 240 MHz, Return loss -39.17 is obtained. and total size of antenna is 14.5X26.6 mm.

References

AUTHOR

Mr. Prakash Shankar Andhare has received his B.E. in Electronics and Telecommunication in year 2007. He is doing master degree in Communication Engineering. His area of interest includes micro processor and antenna theory.

Prof. Abbhilasha Mishra is associate professor in Electronics and Telecommunication department at M.I.T. College of Engineering Aurangabad. Her field of interest is communication engineering. She has also attended many National and international conferences related to communication engineering.